Abstract
The emergence of mosquito-transmitted viruses poses a global threat to human health. Combining mechanistic epidemiological models based on temperature-trait relationships with climatological data is a powerful technique for environmental risk assessment. However, a limitation of this approach is that the local microclimates experienced by mosquitoes can differ substantially from macroclimate measurements, particularly in heterogeneous urban environments. To address this scaling mismatch, we modeled spatial variation in microclimate temperatures and the thermal potential for dengue transmission by Aedes albopictus across an urban-to-rural gradient in Athens-Clarke County GA. Microclimate data were collected across gradients of tree cover and impervious surface cover. We developed statistical models to predict daily minimum and maximum microclimate temperatures using coarse-resolution gridded macroclimate data (4000 m) and high-resolution land cover data (30 m). The resulting high-resolution microclimate maps were integrated with temperature-dependent mosquito abundance and vectorial capacity models to generate monthly predictions for the summer and early fall of 2018. The highest vectorial capacities were predicted for patches of trees in urban areas with high cover of impervious surfaces. Vectorial capacity was most sensitive to tree cover during the summer and became more sensitive to impervious surfaces in the early fall. Predictions from the same models using temperature data from a local meteorological station consistently over-predicted vectorial capacity compared to the microclimate-based estimates. This work demonstrates that it is feasible to model variation in mosquito microenvironments across an urban-to-rural gradient using satellite Earth observations. Epidemiological models applied to the microclimate maps revealed localized patterns of temperature suitability for disease transmission that would not be detectable using macroclimate data. Incorporating microclimate data into disease transmission models has the potential to yield more spatially precise and ecologically interpretable metrics of mosquito-borne disease transmission risk in urban landscapes.
Highlights
Mosquito-transmitted arboviruses are a human health threat of worldwide significance
Predicting the effects of temperature on mosquito abundance and arbovirus transmission cycles is essential for mapping hot spots of disease risk and projecting responses to climate change
We used land cover data to map microclimate temperature in Athens-Clarke County, GA and applied a temperature-dependent vectorial capacity model to predict the effects of microclimate on dengue transmission by Aedes albopictus
Summary
Mosquito-transmitted arboviruses are a human health threat of worldwide significance. Accurate arbovirus risk maps can be used to target surveillance in locations where environmental conditions are conducive to disease transmission [5, 6] and to direct mosquito control in response to arbovirus outbreaks [7]. To be more useful for public health applications in cities, these maps need to capture the neighborhood-level effects of key environmental factors and predict the resulting variation in disease risk across heterogeneous urban landscapes. The present study addresses this need by modeling spatial variation in temperature across an urban-to-rural gradient in the southeastern United States and applying an epidemiological model to determine how these environmental patterns influence the potential for dengue transmission by Aedes albopictus (Skuse)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.