Abstract
Effects of sewage sludge-derived biochar and its precursor on the accumulation of metals (Cd, Cu, Pb and Zn) in soil and their uptake by plants in a 1-year field experiment involving corn-radish rotation were comparatively studied. The human health risks were assessed, and the safe application period of biochar were estimated. The application of biochar, compares to sewage sludge, significantly enhanced the radish yield (p < 0.05; not corn yield) and significantly reduced the accumulation of metals in both plants (p < 0.05), especially the annual application at ≤15 t ha−1. The hazard quotient analyses of the metals showed there were no health risks to humans (Hazard Index < 1) in consuming the edible parts of the both plants. The application of sewage sludge at ≥15 t ha−1 resulted in Cd in radish exceeded the threshold for foodstuffs set by China (0.1 mg kg−1). The total contents of Cd, Cu, Pb and Zn in soil increased gradually as the application of sewage sludge or its biochar increased from 7.5 t ha−1 to 30 t ha−1. More metals were found to be introduced to soil by the land application of biochar than by its precursor at the same doses, because the metals were concentrated in biochar during the preparation process. The contamination risk assessment of soil based on the geo-accumulation index, the contamination factor and the pollution load index suggested the application of biochar on farmland should <15 t ha−1. Therefore, taking into account the yield of and metal concentrations in the radish and corn plants and the contamination risks in soil, it is recommended that the continuous safe application period at an application of 7.5 t ha−1 year−1 of biochar should not exceed 15 years, and that of its precursor sewage sludge should not exceed 17 years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.