Abstract

In this paper, we consider a simple Lévy process given by a Brownian motion and a compensated Poisson process, whose drift and diffusion parameters as well as its intensity are unknown. Supposing that the process is observed discretely at high frequency, we derive the local asymptotic normality (LAN) property. In order to obtain this result, Malliavin calculus and Girsanov's theorem are applied in order to write the log-likelihood ratio in terms of sums of conditional expectations, for which a central limit theorem for triangular arrays can be applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.