Abstract

BackgroundHuman mutations in the X‐linked lysosome‐associated membrane protein‐2 (LAMP2) gene can cause a multisystem Danon disease or a primary cardiomyopathy characterized by massive hypertrophy, conduction system abnormalities, and malignant ventricular arrhythmias. We introduced an in‐frame LAMP2 gene exon 6 deletion mutation (denoted L2Δ6) causing human cardiomyopathy, into mouse LAMP2 gene, to elucidate its consequences on cardiomyocyte biology. This mutation results in in‐frame deletion of 41 amino acids, compatible with presence of some defective LAMP2 protein.Methods and ResultsLeft ventricular tissues from L2Δ6 and wild‐type mice had equivalent amounts of LAMP2 RNA, but a significantly lower level of LAMP2 protein. By 20 weeks of age male mutant mice developed left ventricular hypertrophy which was followed by left ventricular dilatation and reduced systolic function. Cardiac electrophysiology and isolated cardiomyocyte studies demonstrated ventricular arrhythmia, conduction disturbances, abnormal calcium transients and increased sensitivity to catecholamines. Myocardial fibrosis was strikingly increased in 40‐week‐old L2Δ6 mice, recapitulating findings of human LAMP2 cardiomyopathy. Immunofluorescence and transmission electron microscopy identified mislocalization of lysosomes and accumulation of autophagosomes between sarcomeres, causing profound morphological changes disrupting the cellular ultrastructure. Transcription profile and protein expression analyses of L2Δ6 hearts showed significantly increased expression of genes encoding activators and protein components of autophagy, hypertrophy, and apoptosis.ConclusionsWe suggest that impaired autophagy results in cardiac hypertrophy and profound transcriptional reactions that impacted metabolism, calcium homeostasis, and cell survival. These responses define the molecular pathways that underlie the pathology and aberrant electrophysiology in cardiomyopathy of Danon disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.