Abstract

Alow-cost, lab-made polytetrafluoroethylene micro-cell, equipped with three electrodes, wasd evelopedfor the impedimetric detection of SARS-CoV-2. The gold working electrode was modified with a double-ended thiolated poly-adenine probe, which was conjugated with magnetic Fe₃O₄@Au nanoparticles (Fe3O4@Au-(S-polyA-S)-Au). After the loop-mediated isothermal amplification (LAMP) of viral RNA, the single-guide RNA (sgRNA), specifically bound to the SARS-CoV-2 target sequence, activates Cas12a. Cas12a then cleaved the immobilized probe. As a result, the magnetic Fe3O4@Au nanoparticles were released and adsorbed onto the gold electrode surface, using an external magnet. This process increased the physical surface area of the gold electrode, facilitating redox ion ([FeIII/II(CN)6]3-/4-) electron transfer. The decrease in the charge transfer resistance was utilized for SARS-CoV-2 detection. Our LAMP-CRISPR/Cas12a-based impedimetric biosensor, powered by Fe3O4@Au-(S-polyA-S)-Au, demonstrated impressive capabilities, including a remarkable detection limit of 0.8 aM (0.48 copies/µL) and a linear range of 0.01 to 36.06 fM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.