Abstract

Lamins are nuclear intermediate filaments (IFs) with important roles in most nuclear activities, including nuclear organization and cell-cycle progression. Mutations in human lamins cause over 17 different diseases, termed laminopathies. Most of these diseases are autosomal dominant and can be roughly divided into four major groups: muscle diseases, peripheral neuronal diseases, accelerated aging disorders and metabolic diseases including Dunnigan typefamilial partial lipodystrophy (FLPD), acquired partial lipodystrophy (APL) and autosomal dominant leucodystrophy. Mutations in lamins are also associated with the metabolic syndrome (MS). Cells derived from patients suffering from metabolic laminopathies, as well as cells derived from the corresponding animal models, show a disruption of the mechanistic target of rapamycin (mTOR) pathway, abnormal autophagy, altered proliferative rate and down-regulation of genes that regulate adipogenesis. In addition, treating Hutchinson-Gilford progeria syndrome (HGPS) cells with the mTOR inhibitor rapamycin improves their fate. In this review, we will discuss the ways by which lamin genes are involved in the regulation of cell metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.