Abstract

Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments that underlies the inner nuclear membrane. It associates with this membrane through interactions with specific integral nuclear membrane proteins, while within this flattened lamin lattice the nuclear pore complexes are embedded. Next to this peripheral network, the lamins can form intranuclear structures. The lamins are the evolutionary progenitors of the cytoplasmic intermediate filament proteins and have profound influences on nuclear structure and function. These influences require that lamins have dynamic properties and dual identities as structural building blocks on the one hand, and transcription regulators on the other. Which of these identities underlies the laminopathies, a myriad of genetic diseases caused by mutations in lamins or lamin-associated proteins, is a topic of intense debate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call