Abstract

The polymerization of laminins into a cell-associated network is a key process in basement membrane assembly. Network formation is mediated by the homologous short arm tips of the laminin heterotrimer, each consisting of a globular laminin N-terminal (LN) domain followed by a tandem of laminin-type epidermal growth factor-like (LEa) domains. How the short arms interact in the laminin network is unclear. Here, we have addressed this question by reconstituting laminin network nodes in solution and analyzing them by size exclusion chromatography and light scattering. Recombinant LN-LEa1-4 fragments of the laminin α1, α2, α5, β1, and γ1 chains were monomeric in solution. The β1 and γ1 fragments formed the only detectable binary complex and ternary complexes of 1:1:1 stoichiometry with all α chain fragments. Ternary complex formation required calcium and did not occur at 4 °C, like the polymerization of full-length laminins. Experiments with chimeric short arm fragments demonstrated that the LEa2-4 regions of the β1 and γ1 fragments are dispensable for ternary complex formation, and an engineered glycan in the β1 LEa1 domain was also tolerated. In contrast, mutation of Ser-68 in the β1 LN domain (corresponding to a Pierson syndrome mutation in the closely related β2 chain) abolished ternary complex formation. We conclude that authentic ternary nodes of the laminin network can be reconstituted for structure-function studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call