Abstract

Human embryonic stem (hES) cells represent an important tool to study early cell development. The previously described use of human recombinant laminin (LN) 521 represented a step forward in generating clinically safe culture conditions. To test the short-term effect of LN521 on cultured hES cells, five male hES cell lines were cultured on human foreskin fibroblasts (hFFs), Matrigel, LN521, and LN121 and characterized by qPCR, immunofluorescence analysis, as well as their potential for three-germ layer differentiation. Variations in gene expression related to pluripotency, stemness, and testicular cells at different passages and culture conditions were evaluated by qPCR. All cell lines expressed pluripotency markers at protein and RNA level and were able to differentiate into cell types of the three germ layers after being cultured on LN521 for nine passages. Reduction in variation of pluripotency marker expression could be observed after culturing the cells on LN521 for nine passages. hES cells cultured on LN521 exhibited less differentiation, faster cell growth, and attachment when compared to hES cells cultured on LN121 or Matrigel. Our results indicate a positive effect of LN521 in stabilizing pluripotency gene expression and might be the first step towards more controllable and robust culture conditions for hES cells.

Highlights

  • Human embryonic stem cells, together with induced pluripotent stem cells, provide a unique platform to study molecular and cellular mechanisms in humans

  • To examine the behaviour of Human embryonic stem (hES) cells derived on human foreskin fibroblasts (hFFs) during the first passages in feeder-free culture conditions, we grew five male hES cell lines (HS360, HS364, HS380, HS401, and HS420) for four passages (p4) on LN521-coated plates

  • Our results demonstrate that LN521 supports hES cell growth and has a positive effect on maintaining the cells in a normal balanced pluripotent state

Read more

Summary

Introduction

Human embryonic stem (hES) cells, together with induced pluripotent stem cells, provide a unique platform to study molecular and cellular mechanisms in humans. HES cells are isolated at a very early stage of development, between five to eight days after fertilization [1, 2] and have the potential to give rise to the three germ layers, different cell lines seem to vary in their capacity to proliferate and to differentiate. They exhibit diverse expression profiles and seem to prefer various differentiation pathways [3, 4]. New strategies involving the employment of well-defined and controlled culture conditions are needed to establish robust hES cell differentiation protocols.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call