Abstract
BackgroundLarge-scale expansion of myogenic progenitors is necessary to support the development of high-throughput cellular assays in vitro and to advance genetic engineering approaches necessary to develop cellular therapies for rare muscle diseases. However, optimization has not been performed in order to maintain the differentiation capacity of myogenic cells undergoing long-term cell culture. Multiple extracellular matrices have been utilized for myogenic cell studies, but it remains unclear how different matrices influence long-term myogenic activity in culture. To address this challenge, we have evaluated multiple extracellular matrices in myogenic studies over long-term expansion.MethodsWe evaluated the consequence of propagating mouse and human myogenic stem cell progenitors on various extracellular matrices to determine if they could enhance long-term myogenic potential. For the first time reported, we comprehensively examine the effect of physiologically relevant laminins, laminin 211 and laminin 521, compared to traditionally utilized ECMs (e.g., laminin 111, gelatin, and Matrigel) to assess their capacity to preserve myogenic differentiation potential.ResultsLaminin 521 supported increased proliferation in early phases of expansion and was the only substrate facilitating high-level fusion following eight passages in mouse myoblast cell cultures. In human myoblast cell cultures, laminin 521 supported increased proliferation during expansion and superior differentiation with myotube hypertrophy. Counterintuitively however, laminin 211, the native laminin isoform in resting skeletal muscle, resulted in low proliferation and poor differentiation in mouse and human cultures. Matrigel performed excellent in short-term mouse studies but showed high amounts of variability following long-term expansion.ConclusionsThese results demonstrate laminin 521 is a superior substrate for both short-term and long-term myogenic cell culture applications compared to other commonly utilized substrates. Since Matrigel cannot be used for clinical applications, we propose that laminin 521 could possibly be employed in the future to provide myoblasts for cellular therapy directed clinical studies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13395-016-0116-4) contains supplementary material, which is available to authorized users.
Highlights
Large-scale expansion of myogenic progenitors is necessary to support the development of highthroughput cellular assays in vitro and to advance genetic engineering approaches necessary to develop cellular therapies for rare muscle diseases
extracellular matrix (ECM) influences myogenic potential To compare the activity of freshly isolated mouse satellite cells, we Fluorescent-activated cell sorting (FACS) sorted Integrinα7+/PDGFRα–/Sca1−/CD31 −/CD45− cells (Additional file 2: Figure S2) and plated on ECM substrates including laminin 111, laminin 211, laminin 332, laminin 411, laminin 421, laminin 511, laminin 521, gelatin, and growth factor reduced MG (Fig. 1a)
We observed a striking increase in proliferation resulting in a three- to fourfold increase in cell number on laminin 511, laminin 521, and MG compared to all other substrates (Fig. 1a, c)
Summary
Large-scale expansion of myogenic progenitors is necessary to support the development of highthroughput cellular assays in vitro and to advance genetic engineering approaches necessary to develop cellular therapies for rare muscle diseases. The satellite cell name was conferred based on its identification on the periphery of the myofiber characterized by very little cytoplasm and a prominent nucleus In this position, satellite cells remain in an inactive quiescent state characterized and regulated by the transcription factor Pax7 [1]. Once activated in response to muscle damage, satellite cells up-regulate the transcription factor MyoD and enter the cell cycle as transit-amplifying myoblasts [2]. Once they reach sufficient numbers, myoblasts exit the cell cycle, increase expression of myogenin, and differentiate to form multinucleated myotubes through the process of cellular fusion [3, 4]. These myotubes form the building blocks for functional, contractile muscle fibers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.