Abstract

During mammalian brain development, radial glial progenitors balance between proliferation and differentiation to generate the laminated cortical layers in a temporally precise fashion. Defects in the individual steps going into this complex organogenesis can result in cortical malformations and human nervous system disorders. In this issue of Genes & Development, Liu and colleagues (pp. 763-780) present experimental evidence that an evolutionarily conserved cellular polarity gene, Pard3 (partitioning-defective 3), controls the balance of radial glial proliferation and differentiation through interaction with the Hippo signal transduction pathway. Conditional deletion of Pard3 in the developing rodent cortex resulted in striking subcortical band heterotopia, reminiscent of a severe form of human cortical malformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.