Abstract

Aerogel films with a low density are ideal candidates to meet lightweight application and have already been used in a myriad of fields; however, their structural design for performance enhancement remains elusive. Herein, we put forward a laminated structural engineering strategy to prepare a free-standing carbon nanotube (CNT)-based aerogel film with a densified laminated porous structure. By directional densification and carbonization, the three-dimensional network of one-dimensional nanostructures in the aramid nanofiber/carbon nanotube (ANF/CNT) hybrid aerogel film can be reconstructed to a laminated porous structure with preferential orientation and consecutively conductive pathways, resulting in a large specific surface area (341.9 m2/g) and high electrical conductivity (8540 S/m). Benefiting from the laminated porous structure and high electrical conductivity, the absolute specific shielding effectiveness (SSE/t) of a CNT-based aerogel film can reach 200647.9 dB cm2/g, which shows the highest value among the reported aerogel-based materials. The laminated CNT-based aerogel films with an adjustable wetting property also exhibit exceptional Joule heating performance. This work provides a structural engineering strategy for aerogel films with enhanced electric conductivity for lightweight applications, such as EMI shielding and wearable heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.