Abstract

Mesoscale electromechanical systems find applications in fields such as medical instrumentation, soft robotics, microscopy, flexible electronics and imagining. This paper implements the printed circuit MEMS (PC-MEMS) process [1] for the fabrication of a ‘pop-up’ flexure-based mesoscale system that exploits the simplicity of 2-D manufacturing techniques such as sheet-metal operations and laser cutting to realize a 3-D mechanism. The fabrication of a laminated Delta robot with prismatic actuation is presented to exemplify this process. A working device with actuation and functional components such as linear guides, stepper motors and limit switches is designed and fully realized. Because the mechanism is popped out of the plane to achieve its 3D shape, we present a stiffness analysis to arrive at the out-of-plane (or ‘pop-out’) angles that the planar system must accommodate so that constraints/limits on actuator torque/force can be can satisfied while producing an operational system. The simplicity of the processes makes it a candidate for the use in the emerging open-source hardware technologies for fabricating low-cost, complex, electromechanical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.