Abstract

For the first time, solar cells of laminated grid cell (LGCell) design are fabricated on multicrystalline nontextured silicon (mc-Si). An efficiency of 15.9% is achieved. The effect of (n + pp +)-mc-Si structure treatment by atomic hydrogen generated by a hot filament and microwave plasma is studied. Hydrogenation improves the parameters describing the dependence of the open-circuit voltage on the radiation intensity and the long-wavelength (λ = 1000 nm) sensitivity of the solar cell by 10–20%, which indicates that defects in mc-Si are passivated. Hydrogenation of the emitter side results in an increase in the series resistance of the solar cell, a decrease in the short-wavelength (λ = 400 nm) sensitivity by 30–35%, and the appearance of an oxygen peak in the energy-dispersive spectra (EDS). These effects are eliminated by fine etching of the emitter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.