Abstract

Laminarin is a component of brown seaweed, especially isolated from Salicornia herbacea. Laminarin was known to have various physiological functions, however, the molecular mechanism is still unclear. In this study, we report that laminarin stimulates an activation of AMP-activated protein kinase (AMPK) and increases glucose uptake in rat L6 myotubes. Laminarin also increases an intracellular calcium release. Inhibition of Ca2+ release, using with CaMKK inhibitor, STO-609, blocked laminarin-induced AMPK activity, indicating that laminarin stimulated AMPK activity via calcium. In addition, laminarin activates p38 mitogen-activated protein kinase (MAPK) signaling pathways depending on AMPK activity. Moreover, the inhibition of either AMPK or p38 MAPK blocked laminarin-induced glucose uptake in rat L6 myotubes. Taken together, these results demonstrate that the hypoglycemic effect of laminarin is caused by its ability to activate AMPK-p38 MAPK pathways in skeletal muscles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.