Abstract
An experimental study of the laminar-to-turbulent transition and resulting hydrodynamic forces on a body of revolution with a long, favorable pressure gradient forebody (i.e., where pressure is dropping and the flow accelerating) is reported. Over a substantial range of body velocity and angle of attack the favorable pressure gradient is shown to postpone transition to the point of laminar separation, and this extended laminar region results in a much lower hydrodynamic drag than is characteristic of an all-turbulent body. The intermittency of the boundary layer and the propagation characteristics of turbulent spots in the extended favorable pressure gradient region are quantified by hot film probes mounted flush with the body surface. The sensitivity of the boundary layer transition to three-dimensional surface roughness elements located in tandem (along a streamline) is also quantified. A number of such elements in tandem causes transition at a lower Reynolds number than would a single element of the same size, this effect becoming more pronounced with increasing number of roughness elements and decreasing space between them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.