Abstract

A laminar separation bubble is studied on an SD7003 foil in a water towing tank at a Reynolds number of 6⋅104 and an angle of attack of 6∘ by means of the temperature sensitive paint single-shot lifetime method in order to resolve the footprints and dynamics of vortical structures at low inflow turbulence levels. A heat flux is created by applying a carbon based heating layer on the suction side of the foil. The influence of the surface heating on the transition behaviour is analyzed using 2D2C-PIV and found to be negligible. The results demonstrate the capability of the single-shot lifetime method to quantify salient time-averaged flow characteristics, as well as to resolve and characterize the footprints of the dominant coherent structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.