Abstract

ABSTRACTSteady-state numerical simulations have been conducted to investigate natural convection of yield stress fluids obeying Bingham model in square cross-sectioned axisymmetric cylindrical annular enclosure with vertical walls subjected to constant heat fluxes for nominal Rayleigh number range of 103 to 106, nominal Prandtl number of 10 to 103 for different values of internal cylinder radius. It is found that the mean Nusselt number on the inner periphery increases (decreases) with increasing nominal Rayleigh (Bingham) number due to strengthening (weakening) of thermal advection. However, the values of the mean Nusselt number on the inner periphery obtained for Bingham fluids are smaller than that obtained for Newtonian fluids for the same set of nominal Rayleigh and Prandtl numbers. The mean Nusselt number normalized by the corresponding value obtained for pure conductive transport increases with increasing internal radius before asymptotically approaching the mean Nusselt number for a square enclosure. This suggests that the ratio of the convective to the conductive transport strengthens with increasing cylinder radius in the cylindrical annular cavity. Detailed physical explanations have been provided for the effects of the aforementioned parameters on the mean Nusselt number on the inner periphery and correlations have been proposed for the mean Nusselt number on the inner periphery for both Newtonian and Bingham fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.