Abstract

The laminar, incompressible, hydrodynamically fully developed and thermally developing flow is studied in straight ducts of square cross section, containing four equal, symmetrical, straight, thin and with 100 percent efficiency internal fins. Both the duct wall and the fins are subjected successively to constant temperature boundary condition. Numerical results are obtained using an iterative ADI scheme for the friction number, the temperature distribution and the Nusselt number for the thermally developing and developed regions as functions of axial distance and fin height. Results obtained are in good agreement with the corresponding literature values. In the thermally developing region a high heat transfer coefficient is obtained. Friction number and Nusselt number in the thermally developed limit increase as the fin height increases until they reach their critical values at fin heights near 0.85 and 0.73 respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call