Abstract
Gypsum crusts are typical decay forms on limestone in polluted urban environments. Their origin and relation to the stone facies have been thoroughly investigated in the past three decades. Here, we present the combined use of novel techniques for a microspatial structural, chemical and mechanical characterization of a laminar black gypsum crust on a sandy limestone. These techniques include i.a. X-ray computed microtomography, X-ray Fluorescence micromapping, permeability mapping and the scratch test. They reveal the typical architecture of a laminar gypsum crust, with an outer opaque layer, a subsurface gypsum crystallization layer and a deeper cracked zone passing irregularly into the sound stone. Gypsum crystallization is mostly restricted to an irregular outer zone with an average thickness of 500µm, while cracks are found deeper within the rock. These cracks decrease the rock strength to more than 27.5mm below the surface. Because of their surface parallel orientation and thickness of >10–100µm, they create the potential for surface scaling. This is shown by a laboratory acid test where the crack network extensively developed due to further exposure to an SO2 environment. The use of novel techniques opens potential for the study of different decay forms and can be used for stone diagnosis with regards to conservation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.