Abstract

A novel microfluidic chip with simple design, easy fabrication and low cost, coupled with high-sensitive laser induced fluorescence detection, was developed to provide continuous single-cell analysis based on dynamic cell manipulation in flowing streams. Making use of laminar flows, which formed in microchannels, single cells were aligned and continuously introduced into the sample channel and then detection channel in the chip. In order to rapidly lyse the moving cells and completely transport cellular contents into the detection channel, the angle of the side-flow channels, the asymmetric design of the channels, and the number, shape and layout of micro-obstacles were optimized for effectively redistributing and mixing the laminar flows of single cells suspension, cell lysing reagent and detection buffer. The optimized microfluidic chip was an asymmetric structure of three microchannels, with three microcylinders at the proper positions in the intersections of channels. The microchip was evaluated by detection of anticancer drug doxorubicin (DOX) uptake and membrane surface P-glycoprotein (P-gp) expression in single leukemia K562 cells. An average throughput of 6–8cellsmin−1 was achieved. The detection results showed the cellular heterogeneity in DOX uptake and surface P-gp expression within K562 cells. Our researches demonstrated the feasibility and simplicity of the newly developed microfluidic chip for chemical single-cell analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.