Abstract

The laminar flow and chaotic mixing characteristics of a high-viscosity fluid in static mixers with staggered perforated helical segments were numerically investigated in the range of Re=0.1-150. The numerical results of pressure drop of Kenics static mixer have a good agreement with the reported data from the literature. The effects of aspect ratio Ar and Reynolds number on the mixing performance of Modified Kenics Static Mixers (MKSM) were evaluated by Darcy friction coefficient, shear rate, stretching rate, and Lyapunov exponent, respectively. The product of f×Re for MKSM linearly increased with the increase of Re, but it was constant under Re<10. The values of shear rate in the first perforated hole of mixing elements gradually became much larger by 1.10%-11.78% than those in the second perforated hole with the increasing Re. With the increase of dimensionless axial mixing length, the stretching rate increased linearly and the sensitivity for initial condition gradually weakened. A larger Ar is beneficial for micro-mixing in creeping flow. The average Lyapunov exponent linearly increases with the increase of Re. The profiles of Lyapunov exponent at different dimensionless perforated diameter (d/W) and perforated spacing (s/W) indicate that the chaotic mixing in MKSM is much more sensitive to d/W than s/W. A dimensionless parameter η taking into account the mixing degree and pressure drop was employed to evaluate the mixing efficiency. The optimization of perforated helical segments with the highest mixing efficiency at Re=100 was d/W=0.55 and s/W=1.2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.