Abstract

Blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) of cortical layers relies on the hemodynamic response and is biased toward large veins on the cortical surface. Functional changes in the cerebral metabolic rate of oxygen (ΔCMRO2) may reflect neural cortical function better than BOLD fMRI, but it is unknown whether the calibrated BOLD model for functional CMRO2 measurement remains valid at high resolution. Here, we measure laminar ΔCMRO2 elicited by visual stimulation in macaque primary visual cortex (V1) and find that ΔCMRO2 peaks in the middle of the cortex, in agreement with autoradiographic measures of metabolism. ΔCMRO2 values in gray matter are similar as found previously. Reductions in CMRO2 are associated with veins at the cortical surface, suggesting that techniques for vein removal may improve the accuracy of the model at very high resolution. However, our results show feasibility of laminar ΔCMRO2 measurement, providing a physiologically meaningful metric of laminar functional metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.