Abstract

Three-dimensional laminar flow in the entrance region of rotating curved pipes was investigated. The governing equations were written in an orthogonal curvilinear coordinate system and solved with a fully three-dimensional numerical method. The development of secondary flow, axial velocity, local and average friction factors for different cases of rotation were given and discussed in detail. The results show that rotation influences the flow structure and friction factor greatly and that the secondary flow is sink-type in the early stage of development and then turns to vortex structure. The average friction factor and the intensity of secondary flow have drastic decrease near the entrance. At some proper rotation, the average friction factor can be noticeably reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.