Abstract

In this paper, we investigate the problem of transient laminar condensation on a moving drop by the semianalytical series-truncation method. The objectives are to assess the validity and the accuracy of the matched-asymptotic method employed in Part 1. The fluid flow and thermodynamic variables are expanded as complete series of Legendre polynomials. The resulting transient momentum, energy and species equations are integrated numerically. The numerical scheme basically involves a three-point central difference for the spatial derivatives and a backward difference expression for the temporal derivatives. The finite-difference equations have been solved by the strongly implicit procedure. Good agreement of the fully transient numerical results with the singular perturbation approximation results of Part 1 lends credibility to a quasi-steady treatment of the continuous phase. The computational time requirements for the fully numerical solutions increase with decreasing non-condensable gas mass fraction in the bulk environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.