Abstract

The effect of hydrogen (H2) addition in the laminar burning velocity (LBV) of n-butane-air at elevated temperatures is described in this paper. For various equivalence ratios (ϕ), ranging from 0.7 to 1.3, LBV was measured for 20%, 40% and 60% H2 addition to n-butane using a preheated mesoscale diverging channel technique. Using this experimental technique, LBV measurements were conducted for unburnt mixture temperature up to 450 K. The maximum burning velocity has been obtained at equivalence ratio 1.1 for all the mixture conditions. The LBV results at atmospheric condition for n-butane-hydrogen-air mixture were obtained by extrapolating the experimental data at elevated temperatures. “Heat flux method” experimental setup was used for measuring the LBV of n-butane-hydrogen-air mixture at atmospheric condition. The results obtained for LBV at atmospheric conditions with the two different methods at 0%, 20%, 40% and 60% H2 composition in n-butane were found to be in good agreement. The experimental results of LBV for n-butane were compared with the numerical predictions using USC mech II, Aramco mech 2.0 and LLNL reaction mechanisms. The numerical predictions of LBV using Aramco mech 2.0 shows good agreement with experimental data at rich, lean and stoichiometric mixture conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.