Abstract

Improvement of gasoline combustion efficiency and its emission reduction are the hot theses of the gasoline components and its surrogate fuels. In this paper, the mechanism and experiment research progress of gasoline constituents and its surrogate fuels are investigated and summarized systematically. The systematic summary results show that the development of gasoline and its surrogate fuels mechanism mainly include three parts: (1) New skeletal mechanism establishment (including more components); (2) More accurate algorithms for detailed mechanism reduction for reducing the computation time; (3) Mechanism update for gasoline and its surrogate fuels combustion characteristics more accurate (such as velocity, ignition delay time). The experiment measurement includes NOx, CO and HC emissions, soot formation, engine simulation experiments, laminar burning velocity (LBV) measurement, and the ignition delay time measured by shock tube and rapid compression reactor. From the review, studies show that alcohols (including bioethanol) have a positive role in reducing HC and CO emissions from fuel combustion. However, the impacts of alcohols addition on NOx emissions are uncertain, the doping ratio increase of alcohol will cause a non-linear increase or decrease of NOx generation. The low temperature combustion got more and more attention because its high efficiency and low emissions, and the next researches will be not only to improve fuel combustion efficiency, but also to reduce pollutant emissions, and low temperature combustion meets these requirements. Biofuels (such as acetone-butanol-ethanol) blended with gasoline and more components (such as naphthene) added into gasoline surrogate fuels are promising way in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call