Abstract
The precipitation-hardened Sm-Co permanent magnets relied on the pinning of nanocellular structures to achieve high coercivity, and have an irreplaceable position in high-temperature applications. In this article, by employing micromagnetic simulations and magnetic domain observations, the pinning behavior of lamellar phases (Z-phase) were investigated, which has not been well understood before. The results showed that the Z-phase can serve as a strong pinning position, but due to the parallel lamellar distribution, the magnetic domain walls can move around. Additionally, the effect of Z-phase on coercivity was achieved by changing the morphology of magnetic domain walls during magnetization reversal. For attractive pinning, the coercivity was reduced by the Z-phase, while for repulsive pinning, the Z-phase increased the coercivity when γZ<0.54γH. Our findings can provide a novel understanding of the coercivity mechanism of precipitation-hardened Sm-Co permanent magnets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.