Abstract

Using total internal fluorescence microscopy, highly parallel measurements of single lipid vesicles unexpectedly reveal that a small fraction of vesicles rupture in multiple discrete steps when destabilized by a membrane-active peptide which is in contrast to classical solubilization models. To account for this surprizing kinetic behaviour, we identified that this vesicle subpopulation consists of multilamellar vesicles, and that the outermost lamella is more susceptible to rupture than unilamellar vesicles of even smaller size. This finding sheds light on the multiple ways in which membrane configuration can influence strain in the bilayer leaflet and contribute to nm-scale membrane curvature sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.