Abstract

Tungstate based nanomaterials have emerged as important class in transition metal oxide. In this study, Lead tungstate (PbWO4) nanostructures with lamellar morphology were prepared by hydrothermal method. The synthesized materials were characterized by XRD, SEM, FTIR, DLS, BET and PL. Nitrogen adsorption-desorption measurements indicated that the surface area of the synthesized lamellar morphology was ∼86.225 m2 g−1. The lamellar-like morphology showed enhanced peroxidase-like activity owing to the large surface area, higher substrate interaction and efficient electron transportation. The results indicated higher reaction velocity (Vmax = 13.56 × 10−8 M s−1) and low Michaelis-Menten constant (km = 0.325 mM) value for nanostructures, providing evidence for higher affinity of novel structures towards the substrate and increased peroxidase-like activity. Finally, biocompatibility test was conducted by performing cytotoxicity experiments of PbWO4 nanostructures on MTT assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.