Abstract

The kinetics of lamellar orientation and rheological properties of symmetric diblock copolymers under steady shear flow using the time-dependent Ginzburg−Landau (TDGL) approach were studied. The simulation results show that a high shear rate can induce a perpendicular alignment for temperatures just below the order−disorder transition (ODT). On the other hand, a low shear rate induces initially mixed morphologies composed primarily of perpendicular and parallel orientations; eventually, the perpendicular alignment is transformed into a parallel alignment via undulation instability. On the contrary, with decreasing temperature, the high shear rate produces a parallel alignment, and the low shear rate induces a perpendicular alignment. The results also show that the reduced shear viscosity rapidly reaches a maximum at a reduced shear strain near one and then decreases. The first and second normal stress differences N1 and N2 are related to the lamellar alignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.