Abstract

A lattice computer simulation of a symmetric A–B–A triblock copolymer melt is reported. This melt is quenched, in simulation, from an athermal state to 39 different temperatures using cooperative motion algorithm. Energy, specific heat, copolymer end-to-end distance, bridging fraction, lamellar spacing, concentration profiles, and microstructure visualizations are reported. The quenching simulation results are compared with those obtained by alternative thermal treatments, that is by slow heating and slow cooling. Quenches yield data consistent with theory and experiment, whereas slow cooling and slow heating results do not capture the expected behavior for the lamellar spacing and the bridging fraction. Finally, at very low temperatures, below the conventional order–disorder transition temperature, an additional ordering is recorded, from a conventional lamellar phase to a lamellar structure showing copolymer junction points condensed into a two-dimensional plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.