Abstract
Ordered mono-amide cross-linked alkyl/siloxane hybrids (mono-amidosils) incorporating a Rhodamine (B) methyl ester perchlorate dye (Rh(B)CH3ClO4) have been synthesized through the sol–gel process and self-directed assembly. The host hybrid matrix m-A(14) is a lamellar bilayer hierarchically structured hybrid composed of short methyl-capped alkyl chains grafted to a siliceous framework through amide groups. At low dye concentration [n = 20, where n is the molar ratio of amide groups per Rh(B)CH3ClO4] a new lamellar structure with higher interlamellar distance than that of m-A(14) is formed, whereas at higher dye content (n = 5) this new lamellar structure coexists with that of m-A(14). The efficient encapsulation of Rh(B)CH3ClO4 provided by m-A(14) via hydrogen bonding interactions ensured the complete dissolution of the dye and induced a blue shift of the emission of the dye with respect to that of the isolated state, leading to an increase in the quantum yield from values below 0.01 % (measured for the isolated dye) to 4 % at n = 20. The formation of non-fluorescent H-type dimers in the sample with n = 5 accounts for the reduction of the quantum yield. The incorporation of Rh(B)CH3ClO4) into m-A(14) was clearly beneficial from the standpoint of the dye’s photostability, allowing to suppress photobleaching during the first 4 h. An intensification of the emission intensity by 50 and 25 % for the emission centered at 600 and 645 nm resulted, respectively, at n = 20.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.