Abstract

Microphase separation of random copolymers, as well as that of high χ-low N block copolymers, is promising to construct sub-10-nm structures into materials. Herein, we designed statistical copolymers consisting of 2-hydroxyethyl acrylate (HEA) and N-octadecylacrylamide (ODAAm) to produce crystallization and hydrogen bond-assisted lamellar structure materials. The copolymers not only formed a crystalline lamellar structure with 3-4 nm domain spacing but also maintained an amorphous lamellar structure via phase transition above the melting temperature up to approximately 100 °C. The key is to introduce hydrogen-bonding amide junctions between the octadecyl groups and the polymer backbones, by which the polymer chains are physically fixed at the interface of lamellar structures even above the melting temperature. The stabilization of the lamellar structure by the amide units is also supported by the fact that the lamellar structure of all-acrylate random copolymers bearing hydroxyethyl and crystalline octadecyl groups is disordered above the melting temperature. By spin-coating on a silicon substrate, the HEA/ODAAm copolymer formed a multilayered lamellar thin film consisting of a hydrophilic hydroxyethyl/main chain phase and a hydrophobic octadecyl phase. The structure and order-disorder transition were analyzed by neutron reflectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call