Abstract

Lamellar crystal-dominated (LCD) surfaces hold great superiority and broad prospects in polymer surface engineering. The key to this is avoiding the formation of an amorphous phase in the interlamellar region. Here we give a first report of achieving LCD surfaces of polyethylene films via melt stretching-induced free surface crystallization. We demonstrate that the resultant surface is constructed directly by orientated and edge-on lamellae within a surface depth of tens to hundreds of nanometers, while the normally existing amorphous phase is avoided. The crystallization-driven formation of the LCD surface has been ascribed to the heterogeneous chain dynamics of a melt free surface, that is, high chain mobility, low viscosity and loose chain entanglement, which facilitates the complete chain disentanglement during crystallization. In addition, we confirm that the surface morphology is controllable with respect to lamellar orientation, spacing and depth by changing the melt stretching strain or quenching the deformed melt. Meanwhile, owing to a possible kinetics competition between crystallization and chain disentanglement, the structural spacing of surface lamellae holds a positive correlation with the lamellar depth. Since free surface effects are immanent in polymer materials, the currently proposed melt processing strategy is demonstrated to be transferable to other semicrystalline polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call