Abstract

To accurately measure wavelengths of 1.3 and 1.5 micrometers single-mode sources, we developed a lambdameter that can be used in the near IR and the red regions of the spectrum. Wavelength accuracy and resolution are approximately equals 0.1 ppm (parts per million) at 0.633 micrometers . They were measured by comparing each of two adjacent modes of a HeNe laser, frequency- stabilized by a polarization technique, with a single mode from a second frequency-stabilized HeNe laser. We also verified the wavelength of the reference laser with an accuracy of 1 ppm by comparing it with the 1.52 micrometers HeNe laser line. The uncertainty in wavelength of the 1.52 micrometers HeNe laser is limited to the width of the Doppler gain curve, whose peak is known within 0.2 ppm. We describe our lambdameter and the performance of its reference laser as a wavelength transfer standard. Measurements on a commercially packaged 1.52 micrometers distributed-feedback (DBF) laser diode transmitter show that its wavelength fluctuates by at least 1 ppm during normal changes in room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.