Abstract
Recently, size-controlled pesticide microcapsule (MC) delivery systems have played an important role in precision farming development; however, the potential environmental hazards of MCs with different particle sizes have not been fully characterized. In this study, we prepared a series of lambda-cyhalothrin (LC)-MCs with nano and micron-scale capsule sizes (average diameters of 209.4 nm, MC-N; 2.41 µm, MC-S; 4.87 µm, MC-M; and 12.41 µm, MC-L). The assessment results showed that the release and sedimentation behavior of LC-MCs in water and toxicity to zebrafish at three life stages were all particle size-dependent. As the diameter distribution of approximately 100 nm extended to the micron scale (~27 µm), the capsules released more slowly and sunk more quickly in water. In addition, micron-sized LC-MC exposure resulted in significantly less fish mortality and malformations of larvae and embryos compared with nanosized LC-MC exposure. The highest accumulation of MC-N in the gill and the severest toxicity to larvae suggested that the smaller size and stronger permeability of nanocapsules would pose unpredictable consequences for nontargeted organisms. The obvious toxicological differences of LC-MCs toward aquatic organisms implies that regulating MC production in an appropriate size range is an important prerequisite for achieving efficient but safe pesticide applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.