Abstract

We describe a method to produce site-directed mutations anywhere within cDNA by assembling mutagenized PCR fragments in proper orientation using lambda integration in an extension of Gateway technology to yield a full-length mutated gene. This process exploits the directionality of lambda insertion sequences ensuring integration and directionality of PCR product into a cloning vector. The process requires only two sequential integration steps to yield a mutagenized expression vector. Mutagenized vasodilator associated phosphoprotein (VASP) was produced by generating two PCR fragments representing the upstream and downstream portions of the gene, substituting alanine or glutamate residues for VASP serine239. The upstream PCR was engineered with attB1 lambda integration sequences at the 5' region and attB2 at the 3' region of the downstream fragment to ensure correct orientation. The desired mutation was encoded by the forward primer of fragment 2. The reverse primer of the fragment 1 was phosphorylated for subsequent ligation. Vent polymerase provided sequence accuracy and blunt-ended product. The first integration into a donor vector, catalyzed by BP Clonase II created a linear product circularized by blunt end ligation, yielding hundreds of entry vectors containing the mutagenized VASP. A second integration into destination vector yielded plasmid expressing mutant VASP upon transfection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.