Abstract

Acoustic surface waves are widely used to sense and map the properties of the propagation media. In order to characterise local space-time waves, methods such as Gabor analysis are powerful. Nevertheless, knowing which wave is observed, extracting its full bandwidth contribution from the others and to map it in the signal domain is also of great interest. In the Fourier domain, the acoustic energy of a wave is concentrated along the wave-number frequency (k-ω) dispersion curve, a way to extract one wave from others is to filter the signals by mean of k-ω band-pass area that keeps only the selected surface wave. The objective of the present paper is to propose 2D Finite Impulse Response (FIR) filters based on an arbitrary area shape designed to extract selected waves. FIR filtering is based on convolving the impulse response of the filter with the signals. Impulse responses derived from using k-ω elliptical areas (E-FIR) are presented. The E-FIR filters are successfully tested on three experimental space-time signals corresponding to the propagation of Lamb waves measured by standard transducers on a cylindrical shell, by laser Doppler on a plate and generated by a circular pulse and observed by shearography on a rectangular plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.