Abstract

Lamb wave devices based on capacitive micromachined ultrasonic transducers (CMUTs) have been built on 500-μm-thick silicon wafers for frequencies in the vicinity of 1 MHz. CMUTs have been used to both excite and detect Lamb waves in the substrate. This configuration eliminates the need for piezoelectric materials, which are not compatible with the existing integrated circuit (IC) fabrication techniques, and allows easy integration of Lamb wave devices and electronics on the same wafer. Finite element analysis of the devices shows that the lowest order antisymmetric Lamb wave (A0) is the dominant mode in the substrate in this frequency range. This result is also confirmed by demonstration experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call