Abstract

The impact-echo method has been developed over the past 20 years and is now widely used in the nondestructive evaluation of concrete. However, some practical issues remain unresolved, such as the physical basis for the empirical correction factor sbd used to obtain thickness mode frequency. A new approach based on guided wave theory is proposed in this paper: that the impact-echo resonance in plates corresponds to the zero-group-velocity frequency of the S1 Lamb mode. A numerical model is developed, verified by experiment, and then shown to adequately simulate the dynamic response of a concrete plate. Using this model the thickness resonance mode is identified and found to accurately match that particular Lamb mode in terms of shape and frequency. New values forb based on the Lamb mode model are computed and dependence on material Poisson's ratio is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.