Abstract

Although Lamb waves have found extensive use in structural damage detection, their practical applications remain limited. This limitation primarily arises from the intricate nature of Lamb wave propagation modes and the effect of temperature variations. Therefore, rather than directly inspecting and interpreting Lamb wave responses for insights into the structural health, this study proposes a novel approach, based on a two-step cointegration-based computation procedure, for structural damage evaluation using Lamb wave data represented as time series that exhibit some common trends. The first step involves the composition of Lamb wave series sharing a common upward (or downward) trend of temperature. In the second step, the cointegration analysis is applied for each group of Lamb wave series, which represents a certain condition of damage. So, a cointegration analysis model of Lamb wave series is created for each damage condition. The geometrical and statistical features of Lamb wave series and cointegration residual series are used for detecting and distinguishing damage conditions. These features include the shape, peak-to-peak amplitude, and variance of the series. The validity of this method is confirmed through its application to the Lamb wave data collected from both undamaged and damaged aluminium plates subjected to temperature fluctuations. The proposed approach can find its application not only in Lamb wave-based damage detection, but also in other structural health monitoring (SHM) systems where the data can be arranged in the form of sharing common environmental and/or operational trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call