Abstract

We have developed a Lamb-dip laser-induced fluorescence (LIF) system to precisely measure the local magnetic field strength in a plasma. Utilizing the hole burning effect, we made sharp dips on the LIF spectrum as the frequency markers and accurately determined the Zeeman splitting by reading the frequency interval of the dips. The method is valid even in the conditions where the Doppler broadening of the LIF spectrum is larger than the Zeeman shift. The newly developed LIF system is capable of determining a magnetic field strength on the order of 10-4 T. It has been demonstrated that the Lamb-dip LIF system can successfully reproduce a very small field inhomogeneity in the HYPER-I linear device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call