Abstract

SUMMARY We consider a spherical, isochemical, incompressible, non-rotating fluid planet and study infinitesimal, quasi-static, gravitational-viscoelastic perturbations, induced by surface loads, of a hydrostatic initial state. The analytic solution to the incremental field equations and interface conditions governing the problem is derived using a formulation in terms of the isopotential incremental pressure measuring the increment of the hydrostatic initial pressure with respect to a particular level surface of the gravitational potential. This admits the decoupling of the incremental equilibrium equation from the incremental potential equation. As result, two mutually independent (4 X 4) and (2 X 2) first-order ordinary differential systems in terms of the mechanical and gravitational quantities, respectively, are obtained, whose integration is algebraically easier than that of the conventional (6 X 6) differential system. In support of various types of application, we provide transfer functions, impulse-response functions and Green’s functions for the full range of incremental field quantities of interest in studies of planetary deformations. The functional forms in the different solution domains involve explicit expressions for the Legendre degrees n = 0, n = 1 and n 2 2, apply to any location in the interior or exterior of the planet and are valid for any type of generalized Maxwell viscoelasticity and for arbitrary surface loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.