Abstract

SummaryHigh‐risk human papillomaviruses (HPVs) cause cervical cancer, and while there are good prophylactic vaccines on the market, these are ineffective against established infections, creating a clear need for therapeutic vaccines. The HPV E7 protein is one of the essential oncoproteins for the onset and maintenance of malignancy and is therefore an ideal therapeutic vaccine target. We fused the HPV‐16 E7 protein to the Limulus polyphemus antilipopolysaccharide factor (LALF 32‐51), a small hydrophobic peptide that can penetrate cell membranes and that has immunomodulatory properties. LALF 32‐51‐E7 was transiently expressed in Nicotiana benthamiana, and we previously determined that it accumulated better when targeted to chloroplasts compared to being localized in the cytoplasm. Subsequently, we aimed to prove whether LALF 32‐51‐E7 was indeed associated with the chloroplasts by determining its subcellular localization. The LALF 32‐51‐E7 gene was fused to one encoding enhanced GFP to generate a LG fusion protein, and localization was determined by confocal laser scanning microscopy and transmission electron microscopy (TEM). The fluorescence observed from chloroplast‐targeted LG was distinctively different from that of the cytoplasmic LG. Small spherical structures resembling protein bodies (PBs) were seen that clearly localized with the chloroplasts. Larger but less abundant PB‐like structures were also seen for the cytoplasmic LG. PB‐like structure formation was confirmed for both LG and LALF 32‐51‐E7 by TEM. LALF 32‐51‐E7 was indeed targeted to the chloroplasts by the chloroplast transit peptide used in this study, and it formed aggregated PB‐like structures. This study could open a new avenue for the use of LALF 32‐51 as a PB‐inducing peptide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.