Abstract

The Qinghai-Tibetan Plateau plays an important role in global climate and environmental change and holds the largest lake area in China, with a total surface area of 36,900 km2. The expansion and shrinkage of these lakes are critical to the water cycle and ecological and environmental systems across the plateau. In this paper, surface areas of major lakes within the plateau were extracted based on a topographic map from 1970, and Landsat MSS, TM and ETM+ satellite images from the 1970s to 2008. Then, a multivariate correlation analysis was conducted to examine the relationship between the changes in lake surface areas and the changes in climatic variables including temperature, precipitation, evaporation, and sunshine duration. Initial results suggest that the variations in lake surface areas within the plateau are closely related to the warming, humidified climate transition in recent years such as the rise of air temperature and the increase in precipitation. In particular, the rising temperature accelerates melting of glaciers and perennial snow cover and triggers permafrost degradation, and leads to the expansion of most lakes across the plateau. In addition, different distributions and types of permafrost may cause different lake variations in the southern Tibetan Plateau.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.