Abstract

Lake evaporation is a critical component of the hydrological cycle. Quantifying lake evaporation in hyper-arid regions by measurement and estimation can both provide reliable potential evaporation (ET0) reference and promote a deeper understanding of the regional hydrological process and its response towards changing climate. We placed a floating E601 evaporation pan on East Juyan Lake, which is representative of arid regions’ terminal lakes, to measure daily evaporation and conducted simultaneous bankside synoptic observation during the growing season of 2013–2015. A semi-empirical evaporation model derived from Dalton model was parameterized and validated with measured data. The model was then used to estimate lake evaporation during 2002–2015. According to in situ measurements, maximum, minimum and mean lake evaporation were 8.1, 3.7 and 6.5 mm/day, and growing season evaporation was 1183.3 mm (~80% of the annual amount). Adding up non-growing season evaporation that we converted from φ20 pan evaporation at Ejina weather station, the annual mean lake evaporation, 1471.3 mm, was representative of lower Heihe River’s ET0. Model inter-comparison implied our model performed well both in simplicity and accuracy and has potential utilization in a data-sparse area. In 2002–2015, estimated mean daily evaporation was 6.5 mm/day and growing season evaporation was 1233.7 mm. Trend analysis of estimated evaporation proved the evaporation paradox’s existence in this hyper-arid region and validated complementary relationship theory’s adaptability.

Highlights

  • Evaporation links the atmosphere and land surface system in the hydrological cycle [1,2,3]

  • Quantifying evaporation is important for hydrological research on groundwater modeling and large-scale hydrological cycle simulation, and helps us gain a better understanding of hydrological responses to climate change in extreme weather conditions [17,18,19]

  • The E601 pan is floating in the center of the boat with arms stretching out for 5 m in four directions, and the boat is fixed by four steel tubes in the lake to allow only vertical displacement, making the big boat a relatively steady platform whereby the water inside the boat is almost still and the water level data is hardly affected by high waves (Figure 2c)

Read more

Summary

Introduction

Evaporation links the atmosphere and land surface system in the hydrological cycle [1,2,3]. 16.5 m/s) in this hyper-arid study area [10], while the E601 pan, with three modifications, can meet our need of obtaining the actual lake evaporation with satisfying adaptability and affordable cost Another approach for quantifying lake evaporation is model estimation; many studies have shown the reliability and practicality of this method, including the Dalton model [45], Bowen ratio-energy balance (BREB) method [46], Penman model [47], Priestley-Taylor model [48], water budget method [49], complementary relationship method [50,51,52] and energy balance method [53,54], etc. We obtained long time series of lake evaporation and added solid and more convincing proof of the evaporation paradox’s existence in this region

Key Results
Materials
Data Sources
Data Quality Control
Brief Description of the E601 Pan
Derivation of the Model
Inter-Comparisons of Evaporation Models
Method
Time Series of East Juyan Lake’s
Parameterization and Validation of the Proposed Model
Calibration
Inter-comparison
Estimation of EJL’s Evaporation during 2002–2015
Floating
Model Sensitivity and Reliability
Complementary Relationship Theory’s Adaptability in the Hyper-Arid Region
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.