Abstract

The average composition of water, bottom sediments, manganese (Mn) crusts, and Mn concretions from Lake Biwa (the largest freshwater lake in Japan) are re-examined, in conjunction with those of seawater, oceanic pelagic clay, and deep-sea Mn nodules. The purpose is to gain additional insights into the geochemical behaviors of elements in Lake Biwa and the ocean, which are quite different in ionic strength (or salinity), pH, water residence times, sediment accumulation rates, carbon fluxes to sediments, and the redox potential in sediments. Excluding a few millimeters of oxic surface sediment, there is no appreciable accumulation of Mn in the Lake Biwa bottom sediments due to reducing condition there. Consequently, other B-type cations [such as iron (Fe), gallium (Ga), copper (Cu), lead (Pb), cobalt (Co), tin (Sn), and bismuth (Bi), with subshell valence electron configuration of d1−10] are also less concentrated in the lake sediments than in the oceanic pelagic clay. In turn, B-type cations have much higher dissolved concentrations in the lake water than in the ocean. The rare earth elements (REE) mainly form organic complexes in the lake water and carbonate complexes in the ocean. REE are mostly associated with detritus aluminosilicate phases in Lake Biwa sediments but with phosphate phases in deep-sea sediments. Fe and Mn oxide phases are clearly separated in marine Mn nodules and crusts but not in Mn crusts and concretions from Lake Biwa. Useful parameters such as the enrichment factor (EAl) and logarithms of the distribution coefficient (log Kd) of elements between solid and liquid phases were estimated in both systems for further discussions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call