Abstract

Mesozoic granitoids are widespread in the southern margin of the North China Craton, and of particular geological interests because of their indication for lithospheric evolution and close association with porphyry Mo mineralization. In this contribution, in situ LA-ICP-MS U–Pb, Hf isotope and trace element analyses of zircon crystals have been combined to constrain the emplacement time and petrogenesis of the Heyu granitic batholith which hosts the Yuchiling porphyry Mo system, Henan Province, China. As inferred from field investigations, the concentrically zoned Heyu batholith mainly consists of four texturally distinguishable phases, and displays a pattern of monotonically decreasing U–Pb age from 143.0±1.6Ma for Phase 1, through 138.4±1.5Ma for Phase 2, through to ca. 135Ma for Phase 3, and to 133.6±1.3Ma for the Mo-mineralized Yuchiling granite porphyry (Phase 4). The εHf(t) values (−27.7 to −3.4) and the two stage Hf model ages (1403 to 2924Ma) of zircon grains, together with the ages of local strata, suggest that the magmas forming the Heyu batholith were dominantly sourced from the crust, with input of a mantle component. The higher Ce/Ce* ratios of the zircon crystals in the mineralized Yuchiling porphyry compared to those in the Mo-barren phases suggests that fluids exsolved from oxidic magmas might be more favorable for Mo enrichment. A regional synthesis suggests that intensive lithospheric thinning in the southern margin of the North China Craton should not be earlier than 130Ma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.