Abstract

Here we explore the link between the moments of the Laguerre polynomials or Laguerre moments and the generalized functions (as the Dirac delta-function and its derivatives), presenting several interesting relations. A useful application is related to a procedure for calculating mean values in quantum optics that makes use of the so-called quasi-probabilities. One of them, the P-distribution, can be represented by a sum over Laguerre moments when the electromagnetic field is in a photon-number state. Consequently, the P-distribution can be expressed in terms of Dirac delta-function and derivatives. More specifically, we found a direct relation between P-distributions and the Laguerre factorial moments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.